Inducible expression of the 2-5A synthetase/RNase L system results in inhibition of vaccinia virus replication.
نویسندگان
چکیده
Studies of interferon (IFN)-treated virus-infected animal cells have revealed the 2-5A system (2-5A synthetase/RNase L enzymes) as being responsible for virus inhibition only in the case of picornaviridae. To investigate whether those IFN-induced enzymes could be responsible for inhibition of poxvirus replication, we have generated recombinant vaccinia viruses (VV) containing the corresponding genes (VV-2-5AS and VV-RL, respectively). RNase L produced in cells infected with VV-RL leads to rRNA degradation and inhibition of virus protein synthesis, which correlates with about 92% reduction in virus yields by 48 hr after infection. Combined expression of this enzyme with 2-5A-synthetase further inhibits virus yields. The pattern of rRNA fragments produced by infection with viruses VV-RL and/or VV-2-5AS is the characteristic for activation of the 2-5A pathway by IFN treatment. Combined infection of VV-RL together with vesicular stomatitis virus (VSV) demonstrates this inhibition to be specific for VV and not due to a general effect. Breakdown of rRNA is largely due to the recombinant vector-derived enzyme, since a C-terminal deletion mutant of RNase L is inactive and the extent of rRNA degradation induced by infection with VV-RL is similar in cells treated or not with IFN. Moreover, the anti-VV effects of RNase L is also observed in a cell line lacking the endogenous ds RNA-dependent protein kinase (PKR). Thus, our findings provide direct evidence for antiviral activity of the 2-5A system on poxviruses.
منابع مشابه
Evasion of Antiviral Innate Immunity by Theiler's Virus L* Protein through Direct Inhibition of RNase L
Theiler's virus is a neurotropic picornavirus responsible for chronic infections of the central nervous system. The establishment of a persistent infection and the subsequent demyelinating disease triggered by the virus depend on the expression of L*, a viral accessory protein encoded by an alternative open reading frame of the virus. We discovered that L* potently inhibits the interferon-induc...
متن کاملExpression of the E3L gene of vaccinia virus in transgenic mice decreases host resistance to vaccinia virus and Leishmania major infections.
The E3L gene of vaccinia virus (VACV) encodes the E3 protein that in cultured cells inhibits the activation of interferon (IFN)-induced proteins, double-stranded RNA-dependent protein kinase (PKR), 2'-5'-oligoadenylate synthetase/RNase L (2-5A system) and adenosine deaminase (ADAR-1), thus helping the virus to evade host responses. Here, we have characterized the in vivo E3 functions in a murin...
متن کاملA transcriptional signaling pathway in the IFN system mediated by 2'-5'-oligoadenylate activation of RNase L.
Virus replication in higher vertebrates is restrained by IFNs that cause cells to transcribe genes encoding antiviral proteins, such as 2'-5' oligoadenylate synthetases. 2'-5' oligoadenylate synthetase is stimulated by dsRNA to produce 5'-phosphorylated, 2'-5'-linked oligoadenylates (2-5A), whose function is to activate RNase L. Although RNase L is required for a complete IFN antiviral response...
متن کاملSpecific inhibition of the PKR-mediated antiviral response by the murine cytomegalovirus proteins m142 and m143.
Double-stranded RNA (dsRNA) produced during viral infection activates several cellular antiviral responses. Among the best characterized is the shutoff of protein synthesis mediated by the dsRNA-dependent protein kinase (PKR) and the oligoadenylate synthetase (OAS)/RNase L system. As viral replication depends on protein synthesis, many viruses have evolved mechanisms for counteracting the PKR a...
متن کاملPotent inhibition of respiratory syncytial virus replication using a 2-5A-antisense chimera targeted to signals within the virus genomic RNA.
The 2-5A system is a recognized mechanistic component of the antiviral action of interferon. Interferon-induced 2-5A synthetase generates 2-5A, which, in turn, activates the latent constitutive RNase L that degrades viral RNA. Chemical conjugation of 2-5A to an antisense oligonucleotide can target the 2-5A-dependent RNase L to the antisense-specified RNA and effect its selective destruction. Su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Virology
دوره 227 1 شماره
صفحات -
تاریخ انتشار 1997